

Overview

The LC86P6032 microcontroller, a new addition to the LC866000 series, is a 8-bit single chip CMOS microcontroller with one-time PROM. This microcontroller has the same function and pin assignment as for the LC866000 series mask ROM version, and a 32K-byte PROM.

Features

(1) Option switching using PROM data

The optional functions of the LC866000 series can be specified using PROM data. The functions of the trial products can be evaluated using a mass production board.

(2) Inte	ernal one-time PROM capac	city : 32768 bytes	0 1	
· · ·	ernal RAM capacity	: 512 bytes		
	Mask ROM version	PROM capacity	RAM capacity]
	LC866032	32512 bytes	512 bytes	
	LC866028	28672 bytes	512 bytes	
	LC866024	24576 bytes	512 bytes	
	LC866020	20480 bytes	384 bytes	
	LC866016	16384 bytes	384 bytes	
	LC866012	12288 bytes	384 bytes	
	LC866008	8192 bytes	384 bytes	
(4) Ope	erating supply voltage	: 4.5V to 6.0V		-
(5) Inst	truction cycle time	: 0.98µs to 400µs		
(6) Ope	erating temperature range	: -30°C to +70°C		
(7) Pin	and package compatible w	ith the mask ROM version		
(8) Apj	plicable mask ROM versior	n : LC866032/LC8660)28/LC866024/LC866020/I	LC866016/LC866012
		/LC866008		
(9) Fac	ctory shipment	: DIP64S		
		: QFP64E		

Programming service

We offer various services at nominal charges. These include ROM writing, ROM reading, and package stamping and screening. Contact our local representatives for further information.

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Notice for use

When using, please take note of the following.

(1)	Differences	between	the	LC86P	6032	and the	e L (2866000	series
<u>ر</u>	1)	Differences	occwccii	uic	LCOOL	0052	und un		2000000	501105

Item	LC86P6032	LC866032/28/24/20/16/12/08		
Port status at reset	Please refer to "Port status at reset" on the n	next page.		
Operation after releasing	The option is specified by degrees within	The program located at 00H is executed		
reset	3ms after applying a 'H' level to the reset	immediately after applying a 'H' level to		
	pin.	the reset pin.		
	The program located at 00H is			
	executed.			
Output form of segment	Pulldown resistor	Pulldown resistor : Provided/Not provided		
•S0/T0 to S6/T6	Not provided	Specified by the option		
•S7/T7 to S15/T15	Provided(fixed)	Provided(fixed)		
•\$16 to \$23	Provided(fixed)	Specified by the option		
•S24 to S29	Not provided	Specified by the option		
Operating supply	4.5V to 6.0V	2.5V to 6.0V		
voltage range (VDD)				
Power dissipation	Refer to "electrical characteristics" on the semiconductor news.			

LC86P6032 uses 256 bytes that is addressed on 7F00H to 7FFFH in the program memory as the option configuration data area. This option configuration cannot execute all options which LC866000 series have. Next tables show the options that correspond and not correspond to LC86P6032.

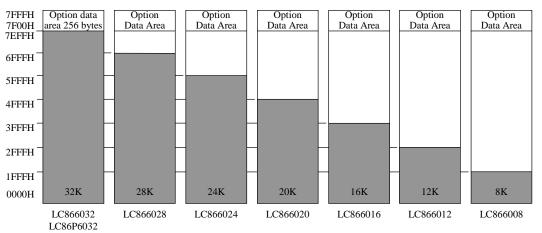
• LC86P6032 Options

Option	Pins, Circuits	Option Settings
Configuration of input/output ports	Port 0	1. Input : No pull-up MOS transistor
	(Can be specified for	Output : N-channel open drain
	each bit.)	2. Input : Pull-up MOS transistor
		Output : CMOS
	Port 1	1. Input : Programmable pull-up MOS transistor
	(Can be specified for	Output : N-channel open drain
	each bit.)	2. Input : Programmable Pull-up MOS transistor
		Output : CMOS
Port 7 pull-up MOS transistor	Port 7	1. Pull-up MOS transistor not provided.
	(Can be specified for	2. Pull-up MOS transistor provided.
	each bit.)	

• A kind of option not corresponding LC86P6032

Option	Pins, Circuits	LC86P6032	LC866032/28/24/20/16/12/08
Pull-down resistor of high	·S0/T0 to S6/T6	Not provided	Specified by the option
voltage withstand output	·S16 to S23	Provided(fixed)	Specified by the option
terminal	•S24 to S29	Not provided	Specified by the option
	(specified in a bit)		

The port operation related to the option is different at reset. Please refer to the next table.


Pin	Option settings	LC86P6032	LC866032/28/24/20/16/12/
P0	Input : No pull-up MOS transistor	(Same as for the mask version)	Input mode without pull-up
	Output : N-channel open drain		MOS transistor (Output is OF
	Input : Pull-up MOS transistor	Input mode	Input mode with pull-up MOS
	Output : CMOS	•The Pull-up MOS transistor is	transistor (Output is OFF)
		not present during reset or several	
		hundred microseconds after	
		releasing reset. After that, the	
		pull-up MOS transistor is present.	
		(Output is OFF)	
P1	Input : Programmable pull-up MOS	(Same as for the mask version)	Input mode without pull-up
	transistor		MOS transistor (Output is Ol
	Output : N-channel open drain		
	Input : Programmable pull-up MOS	(Same as for the mask version)	Input mode without pull-up
	transistor		MOS transistor (Output is OI
	Output : CMOS		
P7	Pull-up MOS transistor not	(Same as for the mask version)	Input mode without pull-up
	provided		MOS transistor
	Pull-up MOS transistor provided	Input mode	Input mode with pull-up MO
		•The Pull-up MOS transistor is	transistor
		not present during reset or several	
		hundred microseconds after	
		releasing reset. After that, the	
		pull-up MOS transistor is present.	

(2) Option

The option data is created by the option specified program "SU866000.EXE". The created option data is linked to the program area by the linkage loader "L866000.EXE".

(3) ROM space

LC86P6032 and LC866000 series use 256 bytes that is addressed on 07F00H to 07FFFH in the program memory as the option specified data area. These program memory capacity are 32512 bytes that is addressed on 0000H to 7EFFH.

(4) Ordering information

1. When ordering identical mask ROM and PROM devices simultaneously.

Provide an EPROM containing the target memory contents together with separate order forms for each of the mask ROM and PROM versions.

2. When ordering a PROM device.

Provide an EPROM containing the target memory contents together with an order form.

How to use

(1) Specification of option

LC86P6032 is programmed after specifying option data. The option is specified by the SU866000.EXE. The specified option file and the file created by our macro assembler (M866000.EXE) are linked by our linker (L866000.EXE) which creates HEX file, then the option code is put in the option specified area (07F00H to 07FFFH) of its HEX file.

(2) How to program for the EPROM

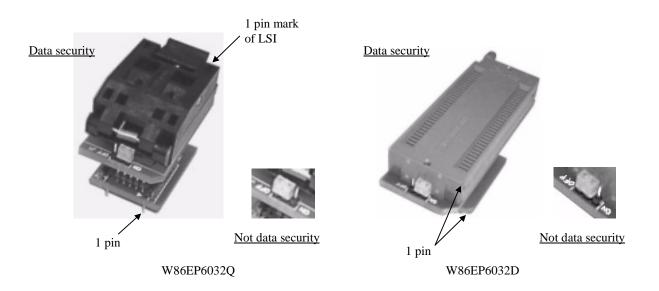
The LC86P6032 can be programmed by an EPROM programmer with attachments W86EP6032D and W86EP6032Q. - Recommended EPROM programmer

Supplier	EPROM programmer
Advantest	R4945, R4944, R4943
Andou	AF-9704
AVAL	PKW-1100, PKW-3000
Minato electronics	MODEL 1890A

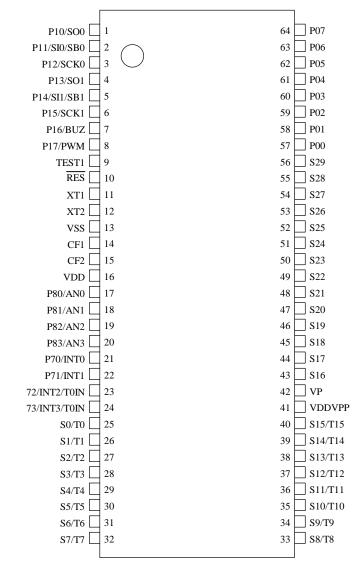
- "27512 (Vpp=12.5V) Intel high-speed programming" mode available. The address must be set to "0000H to 07FFFH" and the jumper (DASEC) must be set 'OFF' at programming.

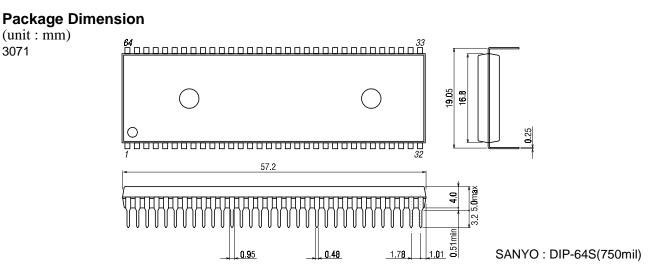
(3) How to use the data security function

"Data security" is a function to prevent EPROM data from being read.

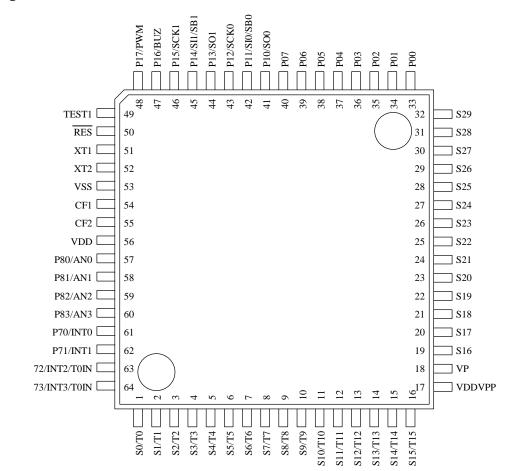

Instructions on using the data security function :

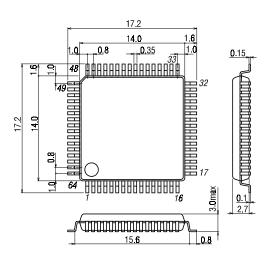
- 1. Set the jumper of attachment "ON".
- 2. Attempt to program the EPROM. The EPROM programmer will display an error. The error indication is a result of normal activity of the data security feature. This is not a problem with the EPROM programmer chip.


(Notes)


- The data security function is not carried out when the data of all addresses contain "FF" at step 2 above.
- Data security cannot be executed when the sequential operation "BLANK=>PROGRAM=>VERIFY" is used at step 2 above.

• Set the jumper "OFF" after execution of data security.

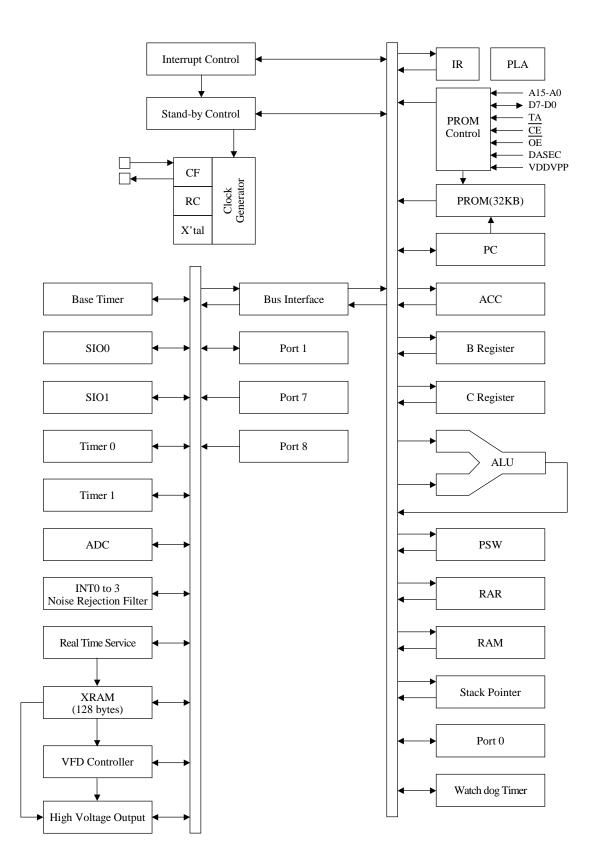




Pin Assignment

Package Dimension

(unit : mm) 3159



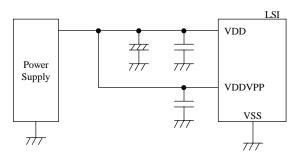
SANYO : QIP-64E

Notes

- The QFP packages should be heat-soaked for 24 hours at 125°C immediately prior to mounting (This baking is called pre-baking).
- After pre-baking, a controlled environment must be maintained until soldering. The environment must be held at a temperature of 30°C or less and a humidity level of 70% or less. Please solder within 8 hours.

System Block Diagram

Pin Description


Pin Description Table

Pin Descript Pin name	I/O		Funct	ion Descri	ntion		On	tion	Function in PROM mode
VSS		Derver			puon		Op	.1011	
	-	1	upply pin (·						
VDD	-		upply pin (the VED	ontent			
VP	-	pull-dow	supply pir	1 (-) IOP	the VFD	output			
VDDVDD		-		.) */					Deress
VDDVPP	-		upply pin (D 11	• .	Power for programming
PORT0	I/O		put / outpu	-			•Pull-up res		
P00 to P07		-	or port 0 int	-				ot present	
		-	utput in nit				•Output for		
		•Input Io	or HOLD re	elease			CMOS/N- open drain		
PORT1	I/O	•8-bit in	•8-bit input/output port						Data input/output
P10 to P17	1/0		rection can	-	ed for each	bit	Output forr CMOS/N-c		D0 to D7
110 10 117			oin function	-	ou for each	010.	open drain	inamier	
		-	SIO0 data o				open urum		
			SIO0 data ii	-	put/output				
			SIO0 clock	-					
			SIO1 : data						
			SIO1 : data		input/outpu	ıt			
		P15 : S	SIO1 clock	input/outp	ut				
		P16 : F	Buzzer outp	out					
		P17 : T	Fimer 1 out	put (PWM	output)				
PORT7		•4-bit in	put port				•Pull-up res	sistor :	
		•Other p	oin function	s			Present/N	ot present	
P70	I/O	P70 : I	NT0 input/	HOLD rele	ease/N-cha	nnel			Input of PROM control
			Tr. output	for watche	log timer				signal
P71 to P73	Ι	P71 : I	NT1 input/	HOLD rele	ease				•DASEC (*1)
			NT2 input/		-				• OE (*2)
		P73 : I	NT3 input		filter/timer	r 0			• CE (*3)
			event inpu						
		•Interrup	pt received	format, ve	ctor addres	s	- <u>r</u>	r	_
			Rising	Falling	Rising	H level	L level	Vector	
					/falling				_
		INT0	Enable	Enable	Disable	Enable	Enable	03H	
		INT1	Enable	Enable	Disable	Enable	Enable	0BH	
		INT2	Enable	Enable	Enable	Disable		13H	
		INT3	Enable	Enable	Enable	Disable	Disable	1BH	
PORT8	Ι	•4-bit inj							
P80 to P83		-	in function						
CO/TO 4-	0	-	put port (4		- 11				
S0/T0 to S6/T6 *7	0	-	for VFD dis		oner				
	0		/timing in c for VFD di		roller				•S14/T14 · TA (*4)
S7/T7 to S15/T15	0	-	for VFD at nt/timing in		roner				•S14/T14 : TA (*4) •S15/T15 : A14 (*5)
513/113		-	l pull-down		itnut				-515/115 . A14 ('5)
*8		·memai	i puii-down		upui				
\$16 to \$23	0	•Output	for VFD di	isnlay cont	roller				Address input
510 10 525	0	segmer		ispiay cont	ionei				Address input A13 to A0
*9		0	nı l pull-down	resistor o	itput				
S24 to S29	0		for VFD di						-
527 10 527	0	segmer		spiay com					
*10		segnici							
- · ·		1							

Pin name	I/O	Function Description	Option	Function in PROM mode
TEST1	0	Test pin		
		Should be left open		
XT1	Ι	Input pin for 32.768kHz crystal oscillation		
		When not used, connect to VDD		
XT2	0	Output pin for 32.768kHz crystal oscillation		
		When not used, should be left open		
CF1	Ι	Input pin for ceramic resonator oscillation		
CF2	0	Output pin for ceramic resonator oscillation		

• All port options can be specified in bit units.

- *1 Memory select input for data security
- *2 Output enable input
- *3 Chip enable input
- *4 TA \rightarrow PROM control signal input
- *5 A14 \rightarrow Address input
- *6 Connect as shown in the following figure to reduce noise into VDD pin.
 - Short-circuit the VDD pin to the VDDVPP pin.

- *7 S0/T0 to S6/T6 : not provided the pull-down resistor
- *8 S7/T7 to S15/T15 : provided the pull-down resistor (fixed)
- *9 S16 to S23 : provided the pull-down resistor (fixed)
- *10 S24 to S29 : not provided the pull-down resistor

р		0 1 1	D'	C I''			Ratings	5	•,	
Para	meter	Symbol	Pins	Conditions VDD[V]		min. typ. max.		max.	unit	
Supply v	oltage	VDDMAX	VDD,VDDVPP			-0.3		+7.0	V	
Input voltage		VI(1)	•Ports 71,72,3,8 • RES			-0.3		VDD+0.3		
		VI(2)	VP			VDD-4.5		VDD+0.3		
Output v	oltage	VO	•S0/T0 to S15/T15 •S16 to S29			VDD-4. 5		VDD+0.3		
Input/Ou voltage	itput	VIO	•Ports 0, 1 •Port 70			-0.3		VDD+0.3		
High level	Peak output	IOPH(1)	Ports 0, 1	•CMOS output •At each pin		-4			mA	
output	current	IOPH(2)	S0/T0 to S15/T15	•At each pin		-30				
current		IOPH(3)	S16 to S29	•At each pin		-15				
	Total	$\Sigma IOAH(1)$	Port 0	Total of all pins		-10				
	output	$\Sigma IOAH(2)$	Port 1	Total of all pins		-10				
	current	Σ IOAH(3)	•S0/T0 to S15/T15 •S16 to S29	Total of all pins		-130				
Low	Peak	IOPL(1)	Ports 0, 1	At each pin				20		
level output	output current	IOPL(2)	Port 70	At each pin				15		
current	Total	$\Sigma IOAL(1)$	Port 0	Total of all pins				40		
	output current	Σ IOAL(2)	Ports 1, 70	Total of all pins				40		
Power di	ssipation	Pdmax(1)	DIP64S	Ta=-30 to+70°C				760	mW	
(max.)		Pdmax(2)	QFP64E	Ta=-30 to+70°C				430		
Operating temperature range		Topr				-30		+70	°C	
Storage temperature range		Tstg				-65		+150		

1. Absolute Maximum Ratings at VSS=0V and Ta=25°C

Notes

• The QFP packages should be heat-soaked for 24 hours at 125°C immediately prior to mounting (This baking is called pre-baking).

• After pre-baking, a controlled environment must be maintained until soldering. The environment must be held at a temperature of 30°C or less and a humidity level of 70% or less. Please solder within 8 hours.

Demonstern	Court of	Dina	Canditiana			Ratings		
Parameter	Symbol	Pins	Conditions	VDD[V]	min.	typ.	max.	unit
Operating supply voltage range	VDD	VDD	0.98μs ≤ tCYC ≤ 400μs		4.5		6.0	V
Hold voltage	VHD	VDD	RAM and registers retain their pre-HOLD mode values		2.0		6.0	
Pull-down voltage	VP	VP		4.5 to 6.0	-35		VDD	
Input high voltage	VIH(1)	Port 0 (Schmitt)	Output disable	4.5 to 6.0	0.4VDD +0.9		VDD	
	VIH(2)	•Port 1 •Ports 72,73 (Schmitt)	Output disable	4.5 to 6.0	0.75VDD		VDD	
	VIH(3)	•Port 70 port input/interrupt •Port 71 • RES (Schmitt)	Output N-channel Tr. OFF	4.5 to 6.0	0.75VDD		VDD	
	VIH(4)	Port 70 Watchdog timer	Output N-channel Tr. OFF	4.5 to 6.0	0.9VDD		VDD	
	VIH(5)	Port 8		4.5 to 6.0	0.75VDD		VDD	
Input low	VIL(1)	Port 0 (Schmitt)	Output disable	4.5 to 6.0	VSS		0.2VDD	
voltage	VIL(2)	•Port 1 •Ports 72,73 (Schmitt)	Output disable	4.5 to 6.0	VSS		0.25VDD	
	VIL(3)	•Port 70 port input/interrupt •Port 71 • RES (Schmitt)	N-channel Tr. OFF	4.5 to 6.0	VSS		0.25VDD	
	VIL(4)	Port 70 Watchdog timer	N-channel Tr. OFF	4.5 to 6.0	VSS		0.8VDD -1.0	
	VIL(5)	Port 8		4.5 to 6.0	VSS		0.25VDD	
Operation cycle time	tCYC			4.5 to 6.0	0.98		400	μs

2. Recommended Operating Range at Ta=-30°C to +70°C, VSS=0V

continue

Demonster	Growhal	Pins	Conditions			Ratings		
Parameter	Symbol	Pins	Conditions	VDD[V]	min.	typ.	max.	unit
Oscillation frequency range (Note 1)	FmCF(1)	CF1,CF2	•12MHz (ceramic resonator oscillation) •Refer to figure 1	4.5 to 6.0	11.76	12	12.24	MHz
	FmCF(2)	CF1,CF2	•3MHz (ceramic resonator oscillation) •Refer to figure 1	4.5 to 6.0	2.94	3	3.06	
	FmRC		RC oscillation	4.5 to 6.0	0.4	0.8	2.0	
	FsXtal	XT1,XT2	•32.768kHz (crystal resonator oscillation) •Refer to figure 2	4.5 to 6.0		32.768		kHz
Oscillation stable time period (Note 1)	tmsCF(1)	CF1,CF2	•12MHz (ceramic resonator oscillation) •Refer to figure 3	4.5 to 6.0		0.02	0.2	ms
	tmsCF(2)	CF1,CF2	•3MHz (ceramic resonator oscillation) •Refer to figure 3	4.5 to 6.0		0.1	1	
	tssXtal	XT1,XT2	•32.768kHz (crystal resonator oscillation) •Refer to figure 3	4.5 to 6.0		1	1.5	S

(Note 1) The oscillation constants are shown on Table 1 and Table 2.

3. Electrical Characteristics at Ta=-30°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions	r		Ratings	-	unit
T drumeter	Bymbol	1 1115	Conditions	VDD[V]	min.	typ.	max.	um
Input high I current	IIH(1)	•Port 1 •Port 0 without pull-up MOS Tr.	•Output disabled •Pull-up MOS Tr. OFF •VIN=VDD (including off-state leak current of output Tr.)	4.5 to 6.0			1	μΑ
	IIH(2)	•Port 7 without pull-up MOS Tr. •Port 8	VIN=VDD	4.5 to 6.0			1	
	IIH(3)	RES	VIN=VDD	4.5 to 6.0			1	
Input low current	IIL(1)	•Port 1 •Port 0 without pull-up MOS Tr.	•Output disabled •Pull-up MOS Tr. OFF •VIN=VSS (including off-state leak current of output Tr.)	4.5 to 6.0	-1			
	IIL(2)	•Port 7 without pull-up MOS Tr. •Port 8	VIN=VSS	4.5 to 6.0	-1			
	IIL(3)	RES	VIN=VSS	4.5 to 6.0	-1			
Output high	VOH(1)	Ports 0, 1 at	IOH=-1.0mA	4.5 to 6.0	VDD-1			V
voltage	VOH(2)	CMOS output	IOH=-0.1mA	4.5 to 6.0	VDD-0.5			_
	VOH(3)	S0/T0 to S15/T15	IOH=-20mA	4.5 to 6.0	VDD-1.8			
	VOH(4)		•IOH=-1mA •The current IOH at each pin should be between 0 and -1mA.	4.5 to 6.0	VDD-1			
	VOH(5)	S16 to S29	IOH=-5mA	4.5 to 6.0	VDD-1.8			
	VOH(6)		•IOH=-1mA •The current IOH at each pin should be between 0 and -1mA.	4.5 to 6.0	VDD-1			
Output low	VOL(1)	Ports 0, 1	IOL=10mA	4.5 to 6.0			1.5]
voltage	VOL(2)		•IOL=1.6mA •When the total current of the ports 0, 1 is not over 40mA.	4.5 to 6.0			0.4	
	VOL(3)	Port 70	IOL=1mA	4.5 to 6.0			0.4	1
Pull-up MOS Tr. resistance	Rpu	•Ports 0, 1 •Port 7	VOH=0.9VDD	4.5 to 6.0	15	40	70	KΩ

continue

Parameter	Symbol	Ding	Pins Conditions VDD[V]			unit		
Parameter	Symbol	Phils			min.	typ.	max.	umi
Output off- leakage	IOFF(1)	S0/T0 to S6/T6, S24 to S29 without	1	4.5 to 6.0	-1			μΑ
current	IOFF(2)	pull-down resistor	•Output P-ch Tr. OFF •VOUT=VDD-40V	4.5 to 6.0	-30			
Pull-down resistor	Rpd	S7/T7 to S15/T15, S16 to S23 with pull-down resistor	•Output P-ch Tr. OFF•VOUT=3V•Vp=-30V	5.0	60	100	200	ΚΩ
Hysteresis voltage	VHIS	•Ports 0, 1 •Port 7 • RES	Output disable	4.5 to 6.0		0.1VDD		V
Pin capacitance	СР	All pins	•f=1MHz •Unmeasured input pins are set to VSS level •Ta=25°C	4.5 to 6.0		10		pF

4. Serial Input/Output Characteristics at Ta=-30°C to +70°C, VSS=0V

		D	G 1 1	D'				Ratings		•.
		Parameter	Symbol	Pins	Conditions	VDD[V]	min.	typ.	max.	unit
	U.	Cycle	tCKCY(1)	SCK0,	Refer to figure 5.	4.5 to 6.0	2			tCYC
	Input clock	Low-level pulse width	tCKL(1)	SCK1		4.5 to 6.0	1			
Serial clock	Inpi	High-level pulse width	tCKH(1)			4.5 to 6.0	1			
srial	k	Cycle	tCKCY(2)	SCK0,	•Use pull-up	4.5 to 6.0	2			
Se	ut clock	Low-level pulse width	tCKL(2)	SCK1	resistor $(1k\Omega)$ when set to open-	4.5 to 6.0		1/2 tCKCY		
	Output	High-level pulse width	tCKH(2)		drain output. •Refer to figure 5.	4.5 to 6.0		1/2 tCKCY		
Serial input	Da	ata set up time	tICK	•SI0,SI1 •SB0,SB1	•Data set-up to SCK0,1 •Data hold from	4.5 to 6.0	0.1			μs
Seria	Da	ata hold time	tCKI		SCK0,1 •Refer to figure 5.	4.5 to 6.0	0.1			
Serial output	(Se	atput delay time erial clock is external clock)	tCKO(1)	•SO0,SO1 •SB0,SB1	•Use pull-up resistor (1kΩ) when set to open- drain output.	4.5 to 6.0			7/12 tCYC +0.2	
Seri	(Se	utput delay time erial clock is ternal clock)	tCKO(2)		•Data hold from SCK0,1 •Refer to figure 5.	4.5 to 6.0			1/3 tCYC +0.2	

Donomotor	Growbal	Pins	Conditions			Ratings		
Parameter	Symbol	PIIIS	Conditions	VDD[V]	min.	typ.	max.	unit
High/low level pulse width	tPIH(1) tPIL(1)	•INT0, INT1 •INT2/T0IN	•Interrupt acceptable •Timer0 pulse countable	4.5 to 6.0	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock selected to 1/1.)	•Interrupt acceptable •Timer0 pulse countable	4.5 to 6.0	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock selected to 1/64.)	•Interrupt acceptable •Timer0 pulse countable	4.5 to 6.0	128			
	tPIL(4)	RES	Reset acceptable	4.5 to 6.0	200			μs

5. Pulse Input Conditions at Ta=-30°C to +70°C, VSS=0V

6. AD Converter Characteristics at Ta=-30°C to +70°C, VSS=0V

Demonster	C11	Disc	Genditions		Ratings				
Parameter	Symbol	Pins	ns Conditions V		min.	typ.	max.	unit	
Resolution	Ν			4.5 to 6.0		8		bit	
Absolute precision	ET		(Note 2)	4.5 to 6.0			±1.5	LSB	
Conversion time	tCAD		AD conversion time	4.5 to 6.0	15.68		65.28	μs	
			$= 16 \times tCYC$		(tCYC=		(tCYC=		
			(ADCR2=0)		0.98µs)		4.08µs)		
			(Note 3)						
			AD conversion time		31.36		130.56		
			$= 32 \times tCYC$		(tCYC=		(tCYC=		
			(ADCR2=1)		0.98µs)		4.08µs)		
			(Note 3)						
Analog input	VAIN	AN0 to AN3		4.5 to 6.0	VSS		VDD	V	
voltage range									
Analog port	IAINH		VAIN=VDD	4.5 to 6.0			1	μΑ	
input current	IAINL		VAIN=VSS	4.5 to 6.0	-1				

(Note 2) Quantizing error ($\pm 1/2$ LSB) is ignored.

(Note 3) The conversion time is the period from execution of the instruction to start conversion to the completion of shifting the A/D converted value to the register.

7. Current Drain Characteristics at Ta=-30°C to +70°C, VSS=0V

Parameter	Sauch of	Pins	Conditions			Ratings		
Parameter	Symbol	PIIIS	VI VI		min.	typ.	max.	unit
Current drain during basic operation (Note 4)	IDDOP(1)	VDD	 FmCF=12MHz for Ceramic resonator oscillation FsXtal=32.768kHz for crystal oscillator System clock : CF oscillator Internal RC oscillator stopped 	4.5 to 6.0		13	26	mA
	IDDOP(2)		 FmCF=3MHz for Ceramic resonator oscillation FsXtal=32.768kHz for crystal oscillator System clock : CF oscillator Internal RC oscillator stopped 	4.5 to 6.0		6.5	14	
	IDDOP(3)		 FmCF=0Hz (when oscillator stops) FsXtal=32.768kHz for crystal oscillator System clock : RC oscillator 	4.5 to 6.0		4	10	
	IDDOP(4)		 FmCF=0Hz (when oscillator stops) FsXtal=32.768kHz for crystal oscillator System clock : crystal oscillator Internal RC oscillator stopped 	4.5 to 6.0		3.5	9	

Continue.

Parameter	Symbol	Pins	Conditions			Ratings	r	unit
i urumotor	5,11001	1 1115	Conditionits	VDD[V]	min.	typ.	max.	annt
Current drain at	IDDHALT(1)	VDD	•HALT mode	4.5 to 6.0		5	10	mA
HALT mode			•FmCF=12MHz for					
(Note 4)			Ceramic resonator					
			oscillation					
			•FsXtal=32.768kHz for					
			crystal oscillator					
			•System clock :					
			CF oscillator					
			•Internal RC					
			oscillator stopped					ļ
	IDDHALT(2)		•HALT mode	4.5 to 6.0		1.8	4.6	
			•FmCF=3MHz for					
			Ceramic resonator					
			oscillation					
			•FsXtal=32.768kHz for					
			crystal oscillator					
			•System clock :					
			CF oscillator					
			•Internal RC					
			oscillator stopped					
	IDDHALT(3)		•HALT mode	4.5 to 6.0		400	800	μΑ
			•FmCF=0Hz					
			(when oscillator					
			stops)					
			•FsXtal=32.768kHz					
			crystal oscillator					
			•System clock :					
			RC oscillator					
	IDDHALT(4)		•HALT mode	4.5 to 6.0		20	60	
			•FmCF=0Hz					
			(when oscillator					
			stops)					
			•FsXtal=32.768kHz for					
			crystal oscillator					
			•System clock :					
			crystal oscillator					
			•Internal RC					
			oscillator stopped					ļ
Current drain at	IDDHOLD(1)	VDD	HOLD mode	4.5 to 6.0		0.05	30	
HOLD mode	IDDHOLD(2)		· · ·	2.5 to 4.5		0.02	20	1
(Note 4)	10011010(2)			2.5 10 4.5		0.02	20	

(Note 4) The currents of output transistors and pull-up MOS transistors are ignored.

Oscillation type	Supplier	Oscillator	C1	C2		
12MHz ceramic resonator	Murata	CSA12.0MTZ	33pF	33pF		
oscillation		CSA12.0MT	33pF	33pF		
		CST12.0MTW	on o	chip		
	Kyocera	KBR-12.0M	33pF	33pF		
3MHz ceramic resonator	Murata	CSA3.00MG	33pF	33pF		
oscillation		CST3.00MGW	on o	chip		
	Kyocera	KBR-3.0MS	47pF	47pF		
* For both C1 and C2 the K	For both C1 and C2, the K rank (± 100) and SL characteristics must be used					

Table 1. Ceramic resonator oscillation circuit recommended constants (main-clock)

* For both C1 and C2, the K rank ($\pm 10\%$) and SL characteristics must be used.

Table 2. Crystal oscillation circuit recommended constants (sub-clock)					
Oscillation type	Supplier	Oscillator	C3	C4	
32.768kHz crystal	Daishinku	DT-38(1TA252E00)	18pF	18pF	
oscillation	Kyocera	KF-38G-13P0200	18pF	18pF	

(Notes) •Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.
•If you use other oscillators herein, we provide no guarantee for the characteristics.

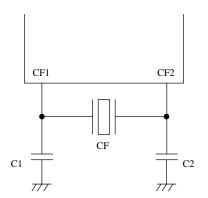


Figure 1 Ceramic resonator oscillation

Figure 2 Crystal oscillation

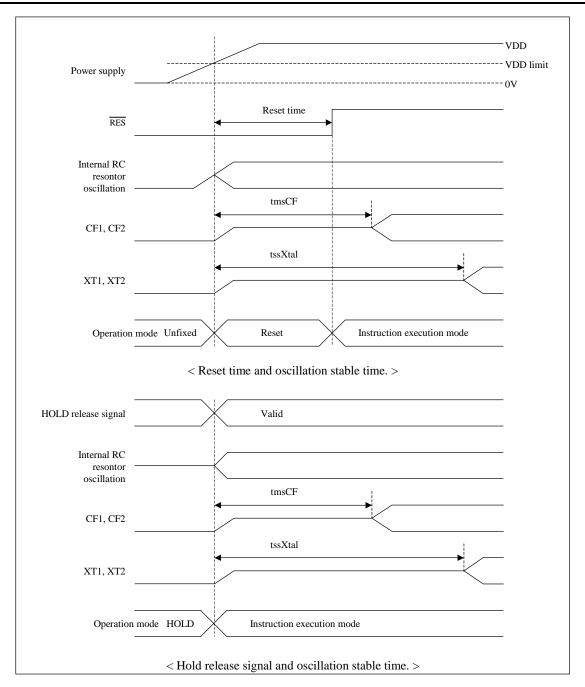
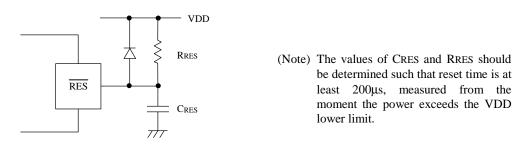



Figure 3 Oscillation stable time

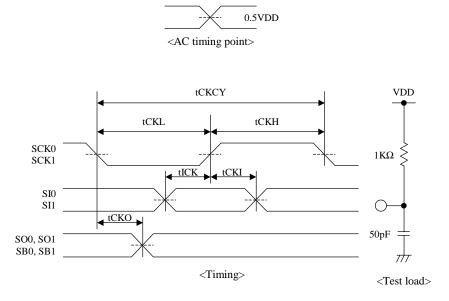


Figure 5 Serial input/output test conditions

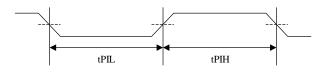
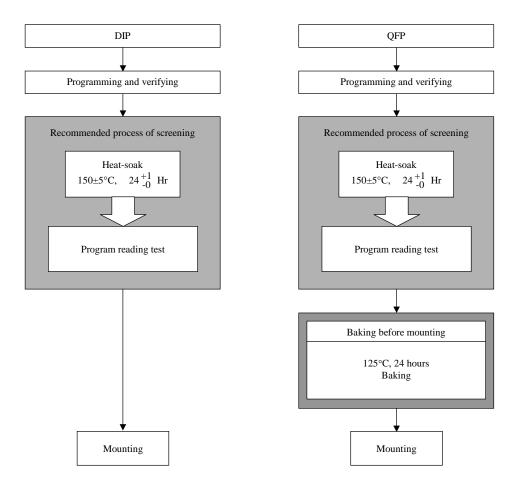
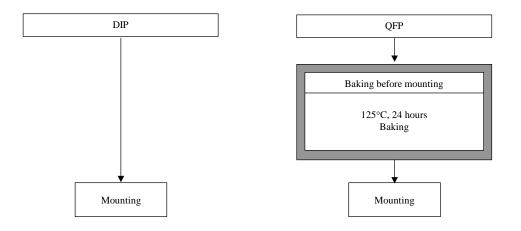


Figure 6 Pulse input timing conditions


Notice for use

- The construction of the one-time programmable microcomputer with a blank built-in PROM makes it impossible for SANYO to completely factory-test it before shipping. To probe reliability of the programmed devices, the screening procedure shown in the following figure should always be followed.
- It is not possible to perform a writing test on the blank PROM. 100% yield, therefore, cannot be guaranteed.
- Should be stored in dry conditions (QFP type only) The environment must be held at a temperature of 30°C or less and a humidity level of 70% or less.
- After opening the packing (QFP type only)


The preparation procedures shown in the following figure should always be followed prior to mounting the packages on the substrate. After opening the packing, a controlled environment must be maintained until soldering. The environment must be held at a temperature of 30° C or less and a humidity level of 70% or less. Please solder within 8 hours.

a. Shipping with a blank PROM (Data to be programmed by customer)

This microcomputer is provided DIP/QFP packages, but the condition before mounting is not same. Refer to the mounting precedure as follows;

b. Shipping with programmed PROM (Data programmed by Sanyo)

cha of t pro	ecifications of any and all SANYO products described or contained herein stipulate the performance, aracteristics, and functions of the described products in the independent state, and are not guarantees the performance, characteristics, and functions of the described products as mounted in the customer's oducts or equipment. To verify symptoms and states that cannot be evaluated in an independent device, a customer should always evaluate and test devices mounted in the customer's products or equipment.
se giv or tha	ANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all miconductor products fail with some probability. It is possible that these probabilistic failures could ve rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, that could cause damage to other property. When designing equipment, adopt safety measures so at these kinds of accidents or events cannot occur. Such measures include but are not limited to protective cuits and error prevention circuits for safe design, redundant design, and structural design.
co su	the event that any or all SANYO products(including technical data,services) described or ontained herein are controlled under any of applicable local export control laws and regulations ich products must not be exported without obtaining the export license from the authorities uncerned in accordance with the above law.
m	p part of this publication may be reproduced or transmitted in any form or by any means, electronic or echanical, including photocopying and recording, or any information storage or retrieval system, otherwise, without the prior written permission of SANYO Electric Co., Ltd.
pro	ny and all information described or contained herein are subject to change without notice due to oduct/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" r the SANYO product that you intend to use.
gu no	formation (including circuit diagrams and circuit parameters) herein is for example only; it is not laranteed for volume production. SANYO believes information herein is accurate and reliable, but guarantees are made or implied regarding its use or any infringements of intellectual property rights other rights of third parties.